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Abstract

This paper presents artificial neural networks and systolic architectures that detect
multi-property relations satisfied by the elements of a se! that is: elements having some
common properties; satisfying at least one of some given properties; not satisfying all
given properties; not satisfying any of some properties. The operations discussed are
initially performed by means of a feedforward artificial neural network which encodes
in its interconnection matrices the values of the properties of the set members. Then the
systolic implementation of the neural network is addressed. Finally the ability of
modifying, adding or deleting elements or properties is discussed.
Keywordg - neural networks, systolic algorithms, set operations

1. INTRODUCTION

Constructing multi-property relations between the elements of one or more sets is
an important component of many computing problems, including various applications of
searching, sorting and matching problems in large data or knowledge bases. Performance
is especially crucial when real time response is required and several parallel algorithms as
well as special purpose architectures have been proposed (see for example Akf 1989;
Herath, 1992).In this paper the utilization of artificial neural networks and systolic arrays
is discussed for the implementation of real time searching techniques which are directly
implementable onto high performance neurocomputing systems or more general VLSI
processor array architectures (Kung,1987; Kung 1993;Przytula & Prasann4 1993).

The basic problem can be stated as follows. Given a set O : {{o,,{Dr,.."<o_} with m
elements, where each element (D,, (l<j<m) has k generic properties Pi, (l<i<k) and each
generic property is a set having m elements, i.e. the actual values of the property for each
ro, (l<j<m). We seek to detect the elements of C) that satisfy some relations between q (l

<q<k) given property values. Let us define the property matrix (l of the property values
as follows :
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where Ptj, (l<i<k), and (lSj<m), will be the actual value of generic property P, for the
element ior. For example, if the m members in a database have the k properties 1F'Pr,.."p*)
: (P#,PNAME,...,PTEL), then the matrix (c of the values of the above properties for the
m members of the database would be:

P#^

NAME.

PTEL.
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where column :, (l<j<m), contains the values of the k properties of member j while line
i, (l<i<k), contains the m values of property P,.

Definition t The mapping
f

f u : (o l , :  c r l j €q  1<  j<  m) - -b (&1 ,P2 ; , . . . ,P* ;

is a relation between each element co, e C) and the values of the k
element (i.e. column j of the matrix f2 ).

Definition 2: The mapping

f r : (P ,  :P , ,e  p ,  1<  i  <  k ,  1<  j  <  m )  
f t  

, (P , , ,P , r , . . . ,P , . ) (2)

propery for theis a relation between each generic property P, and the actual values of the

elements of Q (i.e. row i of the matrix (J).

Definition 3 (Intersection): The mapping 
€

f " : (  P , ,  : P , i  e  ( r , I  < i (  k ,  1 <  j  <  m )  4  R , t  = { o , : P i , =  P , 1 ,  1 < r  (m)  (3 )

is a relation between the value of property P, for element co, e O to the set R,, g Q,
which contains the elements 0), e Q 11<r<m) that have the same value for the above

property, thus creating the matrix $1, with elements Rij, (l<i<k) and (l<j<m), with R,, c
o:

f R,, no ...*,. I
,_ l  R,  Rr . . .Rr ,  I- ' - l l

l^ :  -  I
L R o  R r . . . R k - J

The element R,,can be seen as the result of a single property intersection operation that
for a given input value P,, of a generic property P, produces as its result a subset which
contains all elements of f,) that have the same value for the generic property P, (see also

P#,
PNAME2

PTEL,

P#,

PNAME,

PTELI
"=f P

(l)

properties of that
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Evans et af 1990). The multi-property extension of the intersection operation produces as
result the subset that contains all elements that satisfy a given set of kl input property
values ' l<kKk). Thus, if the set of input property values is p,,,p,,,...,p;.,, where

subscripts ip, (l<ip<h p=1,4-, kl<k), tr,,X runoom subset of {1,2r."k}, then the multi-

property intersection can be defined ut |'1R,,,, , j=\\.."m.
P = l

Definition 4 (Union): The mapping f. can be used for the definition of the multi-
property union as an operation that produces as its result a subset which contains all
elements of Q that fulfil at least one of the given property values. Thus, for a set of
.:fut property values 15 &, ,Pi,, ...,Pir,, we should select the columns j of matrix fr such

: h a t l  i p , (  1 < . i 0 . < k , p =  l , \ - ,  k l < k ) :  o i o  €  R g o , i . T h u s ,  t h e  m u l t i - p r o p e r t y  u n i o n c a n'  
k l < k

be defined ur UR,,,,
P = l

Definition 5 (Complemont): The complement of a multi-propery intersection is

Jefinecl as f) - 

f]*,,,, 
and it can be interpreted as the subset of C) with elements that

Jo not satisfy al l  the input.property

-rnion is defined as f,)  -  
UR,,, ,  und

values. Similarly the complement of a multi-property

it can be interpreted as the subset of Q that do not
P=l

satisfy any of the input property values.

2. NEURAL NBTWORK FOR MULTI.PROPERTY INTERSECTION

Initially the case of multi-property intersection is discussed. The neural network
used is a simple feedforward network (see Simpson, 1990; Wasserman, 1989; Kung, 1993 for
leneral introduction), consisting of three layers: layer 0 is the input layer with k blocks of
: neurons in each block, where n is the number of bits required for encoding the value of
each property in bipolar jorm. Layer 1 consists of k blocks of m neurons in each bloclq''r here m is the number of the elements of the se! with block p of layer 0 fully connected
rr ith block p of layer I. Layer 2, which is the output layer, consists of m neurons
;,,rflfl€ct€d only with the corresponding neurons in each block of neurons at Layer l.

2.L. Interconnection weightr
We assign random values (0,1) to the connections between the neurons of layer 0

and layer 1, so that a three-dimensional synaptic matrix Wo-+r of size (kxnxm) is defined.
The interconnection weights between neurons of layers 1 and 2 are valid, i.e. they have
*eight equal to I only if they obey the interconnection structure discussed before. For the
sr naptic matrix $'/r-+2 defined as a three-dimensional matrix of size (kxmxm) it can be
saiii that *li' : I if and only if i=j, for (l<p<k), (l<i<m) and (lcj<m).
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Layer 0

J
Layer I

t
Layer 2

Figure 1. Neural Network for Intersection

2.2. Activation f unctions
For the neurons at layer I we use as activation function the Hard

f u n c t i o n  w i t h t h r e s h o l d  0 -  n - 1 :

( 1 ,  u >  0 =  n - 1
f , ( u )  =  { ^

l U ,  u ( 0 =  n - l

Delimiter

(4)

For the neurons at layer 2 we use as activation function the Hard Delimiter
function with threshold 0 : kl -1, where kl is the number of the common properties we
search for:

I l , u t 0 = k l  
- l

f r ( u ) - l ^  ( s )'  1 0 ,  u ( $ = k l  - l
t '

2.3. Training (Encoding)
Initially the values of the k properties are encoded in the interconnections

between layers 0 and 1. The synaptic matrix Wo'r is of size (kxnxm) so that each one of

the k sub-matrices with size (nxm), defined as WqH (l<q<k), keeps the values of

property Po in bipolar format. More specifically the encoding has the form
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* l i t  :  P " ,  q :  1 ,2 , . . , k ,  i :  L ,2 , . . ,n ,  j :  1 ,2 , . . ,m

where P* is the ith bipolar digit of the js value of property Pq. The above encoding can

be seen as a simple training procedure which is performed by presenting the values of the

properties for each member <0, of the set (l<j<m), at the input layer 0 and using the
Kohonen learning (Kohonen, 1984)

* : ; '  :  * : i '+  q (p j j  -  * : i ' ) ,  9 :1 ,2 , . . , k ,  i  =1 ,2 , . . ,n  (7 )

where c, = I is the learning coefficient since only one input vector is to be associated with
each neuron at layer I and the class is known (value j of property P" is to be stored in
the weights between all n neurons of block q of layer 0 and neuron j'of block q of layer
1). Notice that layer 1 is trained with only one calculation per weigh! by presenting the k
values of properties for each one of the m members of the set each timg so that a total
of m training phases are required.

2.3. Network Operation (Recall)
During the recall phase the values of the kl properties in question are presented to

the input layer of the network in bipolar forrl so that block q of layer 0 accepts the
required value for the q'h property. More specifically, if we denote the input pattern as a
two-dimensional array X of size (kxn), we can say that :

(6)

u,here Xi, (l<U<k, l<i<n), is the i'h bipolar digit of the value in question for the qth

p r o p e r t y .  F u r t h e r ,  i f  q = { i o : l  S i o ( k ,  P = 1 , 2 , . . , k 1  < k } l -  U , z , . . , k } ,  a  s u b s e t  w i t h  t h e
order of the properties in question, we will have non-zero inputs only to those io blocks
of neurons in the input layer 0. The input to neuron -t, (l<j<m), of any block q, (l<qSk) of
layer I  wi l l  be :

(8).,, : i Xl'

(e): {'?,"'*''

if we search for a value of property B

otherwise" 
9=\z''k- i=l'z''n

i f  we searchforproperty\ ,  
1(  g (  k,

otherwise
uqj = 

I*F' 
*r,

i+here tj,, is the stored value of property Pqfor alr. Further, if q--io €Q the output of

that neuron wil l be vio,j = f, (u,,, j). Therefore, the output wil l be vi,, j =1, only for

u,". j = n, that is only if 1",., = Xl,. Thus, at block io of layer l" the neurons which

C.rrrespofld to the members of C) that satisfy the search value X,,of the generic property

P. (i.e. the members of the subset R,,, j) wil l be activated. The input u,o,J,o every other

neuron j 'of block io at layer l, (Je*,,,r) that does not satisfy this property, wil l be

u,,. j a n, so that the output of these neurons wil l be u,,, j =0.
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The output of layer I forms a two-dimensional array V of size (kxm) which serves
as input to layer 2 through the interconnection matrix Wr-)2. Thus the input to each

neu ron jo f1aye rZ (1< j<m)w i l l beu ' , = i * | ? , ' u ' ' , : i u "=o tu , , ' , <

interconnection weights are valid ( their value is 1) and vq,j:0, when q eq.The output

of that neuron will be u' j= fr(u'j ). Therefore, the output will be u'j = l, only if

u' j = kl, or element j satisfy all the kl properties, i.e. only if
kl<k

t i . 0 R i " . i ,  l < k l < l q l a i n a k . T h e i n p u t a t e v e r y o t h e r n e u r o n  j ' o f  l a y e r  2 t h a t  d o e s
P=l

not satisfy all the kl properties wil l be u', < kl, and its output u'j = 0.

3. OTEER MULTI-PROPERTY RELATIONS

3.1. Multi-property union
The network used for implementing the multi-property union is the same as in Fig.

1, except for the activation function f, where we use the Hard Delimiter Function with
threshold 0 = 0. Thus, during the recall phase the values of the kl properties in question
are presented to the input layer of the network in bipolar fornr, as discussed at section 2
So, at block io of layer 1, the neurons which correspond to the members of C) that satisfy

propertyPi" = X', (i.e. the members of the subset R,,, j) wil l be activated. The input u.,,;

to every other neuron j 'of block io at layer l, (1CRi,,j) that does not satisfy this

property, wil l be u,,,J a n, so that the output of these neurons wil l be vio,j :0. The

output of layer 1 forms a two-dimensional array V of size (kxm) which serves as input to
layer 2 through the interconnection matrix \{r-r2. Thus, the input to each neuron j of

k  .  . ^  k  k l
layer ?. (l<j<m) wil l be u'j: I.* 'o,l j  ur,: : I.rr, j : I.u,,, j S kl, since the

9:l q{ P{

interconnection weights are valid (their value is 1) and vq,j:0, when q Cq. The output

of that neuron wil l be u'j = f, (u'j ). Thereforg the output wil l be v', = l, only if u', > 0,

or element j satisfy at least one of the kl properties, i.e. only if
kl<k

oi .  UR,_ l<k1<b l<io <k.  The input at  every other neuron j 'of  layer 2that do not
J  v i  l P r J

P=t

satisfy at least one of the kl presented properties will be u'j = 0, and its output u'j = 0.

3.2. Complement of Multi-property Intersection
The neural network of Fig. 1 is again used, with the following differences in the

interconnection weights and the activation functions. The interconnection weights
between neuron j, (l<j<m) at block p, (l(pck) of layer 1, and neuron i (l<j<m) of layer 2

will be -1 insteacl of f: wl1: =-1, while the remaining connections are zero. For the

neurons at layer 2 we use as Activation Function the Hard Delimiter Function, with 0 -- -
kl, where kl is the number of properties we search for:
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Thus, at each block of layer 1 only those neurons that correspon to the members

rhar satisfy the property Po will be activated, while the output of all other nodes will be

zero. At layer Z the weighted sum for the neurons that satisfy all the properties will
become, via the negative weights, -kl where kl is the number of the properties we search
ior, and will produce a zero. The rest of the neurons, which belong to the complement of
rhe intersection will produce the unity, which is the desired result.

3.3. Complement of Multi-property Union
The network for the Complement of the Intersection of Properties is used, with

rhe only difference that in the activation function for layer 2 the threshold is -l instead
rf  -k l  :

Layer 1 works as before while at layer 2, the weighted sum for the nodes that
satisfy at least one up to kl properties, after passing via the negative weights, will range
: rom -l to -kt, where kl is the number of the properties we search for, and will produce a
zerg. The remaining neurons, which belong to the complement of the union will produce
:he unity, and the output of layer 2 wil l give the required subset.

4. SYSTOLIC ARRAY IMPLEMENTATION

The systolic implementation for searching for single-property relations is
;iscussed in Margaritis & Evans, 1992 and Margaritis et al 1992 The extension to multi-
rroperty relations is discussed by means of the example of the multi-property
rntersection, based on the bit-level rectangular systolic array of Fig.2

4.L Mapping of noural network onto rystolic ErrEy
ihe basic building block of the systolic implementation of a neural network is a

natrix vector multiplication systolic array which corresponds to the feedforward recall
,peration of one network layer. Starting from layer I we can see that it consists of k
:iocks, each one performing a single-pass full matrix vector multiplication of size (nxm),

:e. it compares the input value of property Xo (l<q<k) with the corresponding property
.. aiues of the m set elements in a bit-wise fashion. Thus, a number of k rows of linear
rrrays, one for each property, is required to accommodate the input of matrix X of size
kxn). The choice of the linear array type is discused in Margaritis & Evans, 1992: herein

:he ring-like linear array is used augmented with an output mechanism so that the result
:an be produced systolically through the vertical channels. The result of each linear array
i.e. a block of layer 1) is a row vector V" (lxm) so that finally the output matrix V of size
kxm) is formed. Layer 2 performs a dimensionality reduction through a summation of

each column of matrix V thus producing as result a row vector U of size (lxm), denoting

:he carclinality of the set elements the satisfy the multi-property intersection chosen. As

:i is shown in Fig. 2 this operation can be performed by means of vertical summation so
:hat the output vector U is produced through a pipeline at the bottom of the array.

(10)[ ] ,  u >  - k l
f " (u)  = {'  

10,  u<-k l

( l l )
[ 1 ,  u >  - 1

f z ( u )  =  

{ o  
u < _ 1



n  3 2 1
property I

n  3 2 1
property 2
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row I

row 2

n  3 2 1

property k

r i n  r : : 0
J- SEQ i:[0 FOR n]
|  |  r : : r * ( x i n * w i )xin -l l- xout xout : :  xin

I  r : : f l ( r )
rout rout :- r * rin

rup I E iii,r
I seq i:tcf FoR nl

rleft -t_l- rout 
ly;;rl

r :: default
SEQ i:[0 FOR n]

r :: r AN.D (xin AND wi)
xout : :  x ln

rout::  r  AND rin

Figure 2. Bit-level Systolic Array for Intersection

r = r u p
SEQ i:[0 FOR n]

rout = r
r = rleft

4.2. Recall phaso ErrEy oporEtion
Initially we discuss the recall phase in more detail The qs row [inear array, (1<q<

k), accepts as input property vector Xo = xo' xqz -, xoo in bipolar formal The input is
delayed by q-l t ime steps, thus forming'a skewed input wavefront for matrix X, as shown
in Fig.2. After n steps the property reaches the end of the array and it is circulated back
through the ring-like connection. The actual computation starts as soon xo, reaches cell 1.
Each cell keeps in local memory the values of the corresponding property for a set

element in bipolar format. Thus, in n steps the j6 cell (Kj<m) performs a bit-level inner

product step operation u" = 
l*ft 

x*, followed by the non linear neuron function v. =

f, (u",). After n steps the result is passed down towards the q*l array, which completes its
opefltion with one step delay.rThe two results are added, thus performing part of the

operation of layer Z i.e. u', = 
,?u" 

. The final sum is passed to the bottom row linear

array which performs the non-linear function of layer Zthat is v'. = fr(u',).The output of
the bottom row linear array is a string of I's or 0's with the position of 

'1's 
in the string

denoting the position of a valid set element. Notice that the array processes n set
elements at a time. Notice, however that the processing of the next group of elements
overlaps exactly with the previous group. Thus, after an initial input delay of 2n*k steps
the results are produced in a continuous string in m steps, so that the total computation
time is 2n+k+m bit-level inner product steps. The area required is the computation is
(k+l)n bit-level cells.

The number of properties that are taking place in the computation as well as the
type of multi-property relation that is being sought is important in order to determine



On Multi-Property Set OPerations

the form and the thresholds of function fr. This information enters the bottom row array
together with the first set of input data and travels systolically through the array so that
the appropriate choice of thresholds is made. Notice that in the case of the complement
operations the valid interconnection weights between layers I and 2 are equal to -1. Thus,
for those operations frshould be applied to -u instead of u.

The bit-serial inner product step discussed is actually a bit-level comparison of a
given input property with the corresponding property value of a set element (see
Margaritis et al, 1992). This comparison-based operation is detailed in the cell descriptions
of Fig. 2. Therein two alternative cell descriptions are presented for the systolic array for
multi-property intersection. The first description is based on the multiplication and
summation concepf while the second is based on boolean operations. Thus, for the second

alternative the computation can be described as follows. In n steps the 3tt' cell (l<j<m)

performs a bit-level logical operation uq,j =f-lt*lit 
f-l *r,). After n steps the result is

passed down towards the q*lth array,which l-ot.pt"t", its operation with one step delay.
The two results are logicaly combined, thus performing part of the boolean operation of

layer Z i.e. u'; : l'l vr, . The final result is passed to the bottom row linear array which
q=l

simply forms the output data string which is a stream of boolean I 's or 0's with the
position of I's denoting the set elements satisfying the chosen multi-property intersection.
It is evident that the second alternative is more economical to implement. In order to
implement other multi-property relations (union or complements), in the first alternative
we have to modify the neuron functions f, and fo as explained in section 3. If the second
alternative is opted then the boolean operations should be modified accordingly. Thus, we
should have

rout :: r OR rin, for multi-property union
rout:= (NOT r) OR rin for intersection complement
rout:: (NOT r) AND rin for union complement

Notice that the input and stored property values should be in similar boolean
format. Further, the type of multi-property relation searching must be known to all cells.
Thus, the input of the property values should be accompanied by a flag indicating the
operation to be performed. Finally the initial values should change accordingly (i.e. logical
I for AND and logical 0 for OR).

4.3. Synaptic matrix allocation and timing schedule
Each cell of the rectangular array, except the bottom row linear array, keeps in its

local memory the property values of some set elements in bipolar or boolean format. The
exact allocation scheme is shown below, as well as the array timing schedule, i.e. time step
that these elements are accessed during the array operation. Fig. 3 depicts the allocation
and operation of the qth row linear array. After (q-l)+n initial steps the q6 input property
value bits are ciculated round the array, as shown at the bottom of Fig. 3. At time step (q-
1)+n the actual processing starts, so that the qs property values of n set elements are
being processed simultaneously, for time steps (q-l)*n to (q-1)+2n-1. This is repeated for p

passes, where U{m/nl where each pass is depicted with a block in Fig. 3.
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linear array q : synaptic matrix Wff'l

pass p

(q-l)+(rr+l)n-1

(q-l)+pn+1

(q-l)+pn

(q-1)+3n-1

(q-l)+2n+l

(q-l)+2n

(q-1)+2n-1

(q-l)+n+l

(q-1)+n

pass 2

pass I

cell I time step

l- 
^rn xqz--E *rtl

Figure 3. Synaptic matrix allocation and timing schedule

In Fig. 3 it is assumed, without loss of generality, that m is divided exactly with n; in the
general case there would be pn-m unoccupied locations at the top bloclq which

coresponds to pass p- Therefore, a given synaptic matrix element *lit = P;, (l<q<k), (t<i

<n) and (l<j-<m), is stored at the bit-level memory location with coordinates

linear array (row) q
cell (columrr) j MOD n
pass j DIV n
memory location (j DIV n)n * (i-j+l) MOD n).

The timing schedule of the same synaptic matrix element can defined in a similar way
and it is shown in Fig.3. The computation at the qth row linear array is completed at step
(q-l)+(p+1)n-1, so that the computation of the ks row is terminated at step (k-l)+(p+1)n-t
or approximately k+m+n, and the final result is produced after 2n*k*m bit-level steps.

4.4. Training phaso atrEy operstion
The training phase consists of essentially loading the elements of the synaptic

matrix Wo-+r into the appropriate memory locations. Notice that the other synaptic
matrices are effectively fixed matrices which are mapped directly onto the neural
network or the systolic array structure, so that no training phase is required. In our case

r-*l
Ed

H
il

t"'"-t1
| {,*u"* |

I t*-u*, I

F
Hn
B_l

cell 2

il
il
il

cell n
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the training phase is reduced to simple encoding i.e' accessing the appropriate memory
location, using the memory allocation strategy described, in order to encode the
corresponding bit of the property value in question. In order to load values to the
memory locations of a systolic system two techniques are used, depending on the actual
realisation of the systolic array. If the systolic array is realised in a massively parallel or
distributed memory neurocomputing system then the memory access is performed
through the memory management system. On the other hand a hardware oriented
realisation implies the usage of the same communication links for both the recall and the
training phase (Kung, 1993; Przytula & Prasanna, 1993). In the former case it is not
possible to have exact time requirements for the training phase. In the latter case the
iraining phase requires (m+l)n bit-level time steps for initial loading all property values.

5. MODIFICATION OF SETS AND PROPERTIES

The modification of a set element consists of the modification of some properties

of the element., i.e. the modification of entry P' ofmatrix (l for given 9o (lSqo(k) and jo

(l<jo<m). This modification can be realised by means of the encoding method presented in

sectlon Z that is *fri, : Pi,,,, , r=1,2,..,n. It is assumed that isolated access to

interconnection weights is possible, for example through a separate memory management
sysem. Otherwise the normal (recall) operation of the systolic array should terminate and
a local or global training procedure should be followed. A local training procedure would
re-encode only the modified value while a global training scheme would refresh the
whole memory of the system.

5.L Adding 8 new eloment
If a new element is added to C), then it will contain m*l elements and in matrix

(l of the values of the properties another column will be added, containing the values of

the k properties for element {D,*,. The interconnection weight between neuron i, (l<i<n)

at block q, (l<q(k) in the input layer 0, and neuron m*l at layer 1 will be the i't' digit of

rhe value of property Pq,m+r' *l, i" l*, - Pj,-+r, i=l,Z..,n,while the rest of the connections

are equal to zero. This corresponds to the'modification' of all properties of a set element.
The interconnection weight between neuron m*l at layer I and neuron m*l at layer 2

1-+2
rvill be *-]i-*, = 1, while the rest of the weights are zero.

In terms of the systolic array implementation the addition of a new set element
requires the encoding of all of its properties into the appropriate memory locations of the
linear array rows by means of the storage allocation scheme described in the previous
sections with j:m+l. However, if m : F& then the addition of a new element implies the

addition of a new pass, since [(m+t)/nl : p*l and therefore (m+l) MOD n = 1. Notice
that there are no other changes required for accommodating the interconnection weights
of higher layers. Thus, the area requirements remain the same, the memory requirements
are increased by kn bit-level locations and the time requirements are increased by one
step.

5.2. Adding I new generic proPertY
If a new generic property (k+1) is added, it will contain m elements, and a new

row shoulcl be added in matrix (l of the values of the properties. In the neural network
of Fig. 1, we add another block (block k+l ) of n neurons at layer 0, and a block of m
neurons at layer 1, which should be fully connected with each neuron of block k*l at

layer 0. The interconnection weight between neuron i, (l<i-<n) at line k + 1, in the input

11
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layer 0, and neuron j, (l<j<m) at line k+l of layer I will be the i6 digit of the actual value

of property P**,,: *li,l: = Pi*r, i, i 
= l,Z-"n, while the remaining connections are zero. The

interconnection weights between neuron j of block k*l at layer I and neuron j at layer 2
. r r  t  l - + 2  1will be *'riii =1 while the remaining connections are zeto.

For the systolic array implementation the addition of a new property requires the
insertion of a new linear array, that is a new row, between the kth row and the bottom
row linear array. The memory locations of this row will be encoded by means of the
storage allocation scheme of section d with q:k+l. Thus, the area requirements are
increased by kn bit-level cells, the memory is increased by kn2 (or approximately km)
locations and the time is increased by one step.

5.3. Deleting an element or E geaoric property

If element jo (l<jo<m) of C) is deleted then the set will contain m-l elements and

column jo of matrix (e should be disabled. This corresponds to the disabling of the joth

neuron of each block of layer I as well as the jr* neuron of layer 2,, that is wlit = 0 and

wlli =0 for g=1,2."k, t=1,2,...,n.q'Jr 'Je

If a generic property go (l(go<k) is deleted this means that row qD of matrix (l
should be disabled. This corresponds to the disabling of the gos block of layirr Q as well as
the interconnections of this block to layer I, that is *i_-rl =Oand *ijti -0 j:1"2,.,rn,

i:1,2...,n.
These modifications can be applied onto the systolic array as follows. The deletion

of generic property qo corresponds to the disabling of row q" of the array. This disabling
can be realised by modifying the cell computations so that th'ey do not interfere with the
calculations of the remaining rows. Thus the cells of row go simply transfer the incoming
result towards the next row without any modification. Thui, in the cell definitions of Fig.
2 we should have

rout := rln for a disabled generic property.

In order to disable the jo set element we should clear the memory locations that
correspond to its property values. Using the storage allocation scheme of section 4 and for
j : jo, all appropriate memory locations can be put to 0.

6. CONCLUSTONS

This paper presents artificial neural networks and systofic architectures that
detect multi-property relations satisfied by the elements of a set" that is elements
having some common properties; satisfying at least one of some given properties; not
satisfying all given properties; not satisfying any of some properties. The operations
discussed are initially performed by means of a multilayer feedforward artificial neural
network which encodes in its interconnection matrices the values of the properties of
the set members. Then the systolic implementation of the neural network is addressed.
Finally the ability of modifying, adding or deleting elements or properties is discussed.

Further research directions to be followed include the realisation of more
complex combinations of set operations, the use of logical and other (e.g. don't care)
operators, as well as the extension to fuzzy set operations. Possible applications of
interest include structured data and knowledge bases, as well as free text searching and
retrieval.
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